Happy March Equinox: An Explanation

March Equinox graphic

Solstice and equinox diagram, showing the March equinox

Image Credit: NASA

Today is the March Equinox. You’ve probably already heard it a few times today; people running around proclaiming with utmost exuberance how today is the first day of Spring. After the long winters that some of us endure, the arrival of Spring is welcome news. But what is really going on today? After all, where I live it still feels like the middle of Winter, but flowers were already blooming on a trip I took to California a couple of weeks ago1. If we based “The First Day of Spring” on climate patterns, regions across the globe would be recognizing a wide variety of days throughout the year.

When someone says today is the first day of Spring, what they really mean (whether they know it or not) is that today represents an equinox; specifically, the March Equinox.2 On Earth, an equinox is the point in its orbit around the Sun when both hemispheres are equally illuminated; our tilted Earth lines up to a point in which the Sun passes directly over the equator. This happens twice a year, on the March and September equinoctes (which I learned today is the proper plural form of the word equinox).

Contrary to popular belief, the day of the equinox does not represent the day where daylight and darkness are equal. You can thank geometry, the atmosphere, and the Sun’s angular diameter to cause that equality to happen at different times geographically. What today does mean though, is that the equinoctes are the only two days in which the Sun rises due-East and sets due-West, and which the Sun would pass directly overhead from an observer on the equator.

One other very important thing that you must know if you don’t learn anything else today. Way too many people believe that the equinoctes are the only day of the year that an egg can be balanced on its end. While its true that on the equinox an egg can be balanced, it’s also true of every other day of the year; it makes no difference!

There are other times during the year (read: our orbit around the Sun) that we recognize Earth residing at a special place.  There’s Perihelion (which we went over in January) and Aphelion, and then the widely-celebrated solstices; but I’ll save that for another time.

Happy March Equinox!


This article originally posted on March 20, 2012.

  1. In fact, while it may have still been Winter to the San Diegans giving me quizzical looks for swimming in the ocean without a wet suit, to an Alaskan like myself it felt like an unusually warm Summer’s day!
  2. What about them being called the Spring  and Fall (or their Latin names, Vernal and Autumnal) equinoctes? Well, that wasn’t exactly fair to those in the Southern Hemisphere, whose seasons are opposite those in the Northern Hemisphere.

Juno: NASA’s Second New Frontiers Mission

Juno Mission Insignia

Juno Mission Insignia – Credit: NASA

NASA’s New Frontiers program is a set of solar system exploration missions designed to address “strategic goals in planetary science through a series of moderate size space missions” (you can read the entire program plan here). New Frontiers consolidates a number of long-term space missions into a single program that share a funding source, management structure, and goals, yet maintain their independent identities. New Horizons, NASA’s recent mission to Pluto and the Kuiper Belt, is considered the first mission of the New Frontiers program. The second mission is named Juno. Launched in 2011 with its sights set on our solar system’s red-spotted giant, Juno is poised to arrive at Jupiter on July 4, 2016. Let’s take a look at the mission and what we can expect to learn.

Juno: What’s In a Name?

Juno takes its name from Greek and Roman mythology. NASA draws the connection between the spacecraft and the myths as such:

Jupiter drew a veil of clouds around himself to hide his mischief. It was Jupiter’s wife, the goddess Juno, who was able to peer through the clouds and reveal Jupiter’s true nature. The Juno spacecraft will also look beneath the clouds to see what the planet is up to, not seeking signs of misbehavior, but helping us to understand the planet’s structure and history.

 

(It’s probably for the best that they left out the part about how Juno was, in addition to being Jupiter’s wife, also his sister.)

Juno Lifts Off

Juno Lifts Off – Credit: NASA/Bill Ingalls

Launch and Earth Fly-by

Juno launched atop the reliable and powerful Atlas V rocket engine on August 5, 2011. This engine contained five solid rocket boosters, along with a Centaur upper stage engine. The launch was flawless. After the solid rocket boosters were expended and jettisoned, the Centaur upper stage ignited and burned for six minutes, placing Juno in a parking orbit around the Earth. Juno coasted for thirty minutes towards the destination for the second Centaur burn. 40 minutes after lift-off from Cape Canaveral, the second Centaur burn was executed. It burned for nine minutes as it accelerated Juno on a trajectory to escape Earth’s orbit. From there, the Centaur engine separated from the spacecraft and Juno was on its own. Juno unfurled her solar panels and settled into a five-year journey to her mythical partner.

Juno underwent a series of deep space maneuvers that brought it back near Earth, two years and two months into its voyage. By now, Juno had already traveled 1.6 billion kilometers (994 million miles). Juno came within 559 kilometers (347 miles) of Earth, borrowing our planet’s gravity to boost its speed with an additional 3.9 kilometers per second (8,800 miles per hour). By the time Juno reaches Jupiter, it will have traveled more than 2,800 million kilometers (1.7 billion miles).

While near Earth, Juno did more than just steal some of our velocity. Juno’s science team activated a number of the spacecraft’s instruments and pointed them at Earth, acting as a sort of dress rehearsal for Jupiter.

Juno will be the second spacecraft to orbit and study Jupiter, preceded by the Galileo mission that performed from 1989 to 2003.

At Jupiter

Artist's concept art of Juno at Jupiter

Artist’s concept art of Juno at Jupiter – Credit: NASA/JPL-Caltech

Once Juno arrives at Jupiter on July 4, 2016, it will begin conducting its primary mission objectives. Juno will orbit Jupiter in a highly-elliptical orbit that will take it sweeping in close to the planet over one of its poles, zipping past the other pole in about two hours, before heading out beyond the orbit of Jupiter’s moon Callisto, repeating every 14 days.

Juno is loaded with instruments that will measure the oxygen and hydrogen ratios in Jupiter’s atmosphere, determine the mass of Jupiter’s core, map the gas giant’s magnetic and gravitational fields, and other important observations and experiments. These will allow us to determine how Jupiter formed, determine its structure below the clouds, and establish the source of the planet’s magnetic field.

JunoCam

Juno is also equipped with a visible light camera named JunoCam. Due to Jupiter’s damaging radiation and magnetic fields, JunoCam is only expected to operate for about 7 or 8 orbits; however, while it’s alive it’s expected to produce some fantastic images. Its specific targets will include Jupiter’s polar region and lower-latitude cloud belts, and will boast a resolution of 15 kilometers (9.3 miles) per pixel.

One of the best things about JunoCam is its strong emphasis on education and public outreach. For months now, a JunoCam website has been accepting images of Jupiter captured by amateur astronomers. These images will be publicly discussed during the next couple of months before a round of voting occurs to select the locations on Jupiter for JunoCam to image. Once the images have been captured and sent to Earth, the raw data will be posted on the JunoCam website for anyone to process and share.

Stay Tuned

If you want to stay up-to-date with the mission, you can watch the program page or follow the Twitter account below:

While you’re at it, you should follow the 46BLYZ Twitter account as well! Stay informed on Juno, and everything else space related.

Galileo Spacecraft: First Orbiter of Jupiter

Artist rendering of Galileo arriving at Jupiter

Artist rendering of Galileo arriving at Jupiter – Credit: NASA

Space Shuttle Atlantis carried a special payload during its STS-34 mission. Commander Don Williams and crew transported the Galileo spacecraft into Earth orbit, from which point it was launched on a years-long voyage to Jupiter. Galileo would become the first spacecraft to orbit an outer planet and would go on to reveal fascinating views of the gas giant and its moons, as well as make monumental discoveries about the nature of the Jovian system.


Quick Facts:

  • Launch Date: October 18, 1989, Shuttle Atlantis STS-34
  • Primary Mission: October ’89 to December ’97.
  • Extended Missions: 3, from ’97 to ’03.
  • Number of Jupiter orbits: 34
  • Total distance traveled during mission: 4,631,778,000 km (approx 2.8 billion miles)
  • Mission End: September 21, 2003

Getting Galileo to Jupiter

Work on the Galileo craft began in 1977, after the exploration of Jupiter was listed as the number one priority in the Planetary Science Decadal Survey published in 1968. Fly-bys of the massive planet were conducted by the twin Pioneer 10 and 11 and Voyager 1 and 2 spacecrafts, but Galileo was set to do more than just perform a fly-by. It would launch an instrument-laden probe into Jupiter’s atmosphere, and then continue to orbit the planet for years. This mission would provide knowledge of the Jupiter system that could hardly even be imagined.

Galileo deploying from Shuttle Atlantis

Galileo deploying from Shuttle Atlantis – Credit: NASA

Galileo suffered a number of postponements. The first planned launch was to be from Space Shuttle Columbia in 1982, but development delays in the Space Shuttle program made that early of a launch unfeasible. The upside is that this gave the Galileo developers more time to work on the probe. Further planned launches and postponements occurred in 1984, 1985, and 1986.

As we all know, 1986 was the year of the Challenger disaster. Galileo would be put on hold during the 32-month hiatus that followed the tragedy, as every detail of the Shuttle program was examined and made safer. Galileo was originally planned to be attached to a liquid hydrogen-fueled Centaur-G booster; however, new safety protocols following Challenger prohibited the booster from being carried in the Space Shuttle’s payload bay. Mission designers had to reconsider how they would get Galileo from the Shuttle’s low Earth orbit to Jupiter. They decided on employing a solid-fuel Inertial Upper Stage booster (IUS). Whereas the Centaur-G would have propelled Galileo on a short and direct trajectory to Jupiter, the IUS would take longer and also require some technical gravitational slingshot maneuvers to make it to the gas giant.

Galileo was finally launched from Space Shuttle Atlantis, during mission STS-34 on October 18, 1989. From there, its IUS booster was started and it began its unique “VEEGA”, or Venus Earth Earth Gravity Assist, maneuvers.

Galileo spacecraft trajectory

Galileo spacecraft trajectory – Source: NASA

  • Galileo flew by Venus on February 10, 1990 at an altitude of 16,000 km (10,000 miles).
  • It then flew by Earth on December 8, 1990 at an altitude 960 km (597 miles).
  • Its trajectory took it near Asteroid Gaspra on October 29, 1991, coming within 1,601 km (1,000 miles).
  • Then it was back to another Earth fly-by on December 8, 1992, this time at an altitude of only 303 km (188 miles).
  • On its way back towards the outer solar system it flew by Asteroid Ida on August 28, 1993, coming within 2,400 km (1,400 miles) of the asteroid.

On its way to Jupiter, Galileo was positioned perfectly to observe the doomed Comet Shoemaker-Levy 9 as it impacted the planet. Pieces of the comet, having been torn into fragments by Jupiter’s immense tidal forces, impacted Jupiter from July 16 – 22, 1994, on the side facing away from Earth. Fortunately, Galileo had a prime view and was able to record the impact. Earth-based telescopes could only observe the impact sites as they rotated into view a few minutes afterwards.

In July, 1995, Galileo released its atmospheric probe component. For the next five months, the probe and orbiter continued their cruise to Jupiter. On December 7, 1995, Galileo had arrived. The orbiter and probe diverged onto their separate missions.

Atmospheric Probe

On December 7, 1995 Galileo’s atmospheric probe sliced into Jupiter’s atmosphere at 47.6 kilometers per second (106,000 miles per hour). As the atmosphere began to slow the probe, it deployed its drogue and main parachutes and dropped its heat shield to expose its scientific instruments. The probe began recording data and transmitting it up to the main Galileo spacecraft orbiting high above, which then re-transmitted the data to Earth. The probe recorded 58 minutes of data on Jupiter’s weather and atmosphere. Towards the end of its descent, the probe measured wind speeds of 724 kilometers per hour (450 miles per hour). The intense heat and pressure of Jupiter’s atmosphere melted and vaporized the probe less than an hour into its journey through Jupiter’s atmosphere.

Orbiter

While the atmospheric probe’s job was complete, the Galileo orbiter still had years of work left to do. The orbiter received its electric power from two radioisotope thermoelectric generators (RTGs). That may sound complicated, but it’s really quite simple. These RTGs carry the radioactive element plutonium-238. As the plutonium decays, it releases energy in the form of heat. That heat can then be easily turned into electricity through the Seebeck effect. This type of energy generation is long-lasting and reliable, as well as impervious to the cold temperatures and strong radiation fields of the Jupiter system. Galileo carried two of these RTGs, with a combined total of approximately 22.7 kilograms (50 pounds) of plutonium-238. While these radioactive components had been used on previous space missions, Galileo drew extra concern due to it being both carried by the Shuttle as well as the multiple Earth fly-bys. Anti-nuclear activists protested Galileo’s launch, fearing a malfunction could cause radiation poisoning for many thousands of people on Earth. NASA, however, argued that the probability of risk was extremely low.

Jupiter's ring system, as observed by Galileo

Jupiter’s ring system, as observed by Galileo – Credit: NASA/JPL/Cornell University

Galileo conducted slow orbits of Jupiter, approximately 2 months long each. The orbits were elongated, and designed to bring the spacecraft within different distances to Jupiter, which allowed it to sample different areas of the planet’s magnetosphere. These orbits were also designed to bring Galileo and its instruments into close fly-bys of Jupiter’s largest moons. Galileo completed its primary mission on December 7, 1997; however, the craft was still functioning extremely well and was able to continue taking measurements and sending valuable data back to Earth. Its mission was extended three times, operating until 2003.

Volcanic activity on Io, as observed by Galileo

Volcanic activity on Io, as observed by Galileo – Credit: NASA/JPL

The orbiter made several discoveries during its mission:

  • It discovered a possible ocean under Europa’s icy crust
  • Revealed Ganymede’s very own magnetic field, the only moon known to have this feature
  • Made the first observations of ammonia clouds in another planet’s atmosphere
  • It created hundreds of images of Jupiter’s large ‘Galilean moons’: Io, Callisto, Europa, and Ganymede
  • It measured the high levels of volcanic activity on Io

Sagan Criteria for Life

The late astronomer Carl Sagan devised a set of experiments to be conducted by Galileo during its first fly-by of Earth. The purpose of the experiments was to see if life could be easily detected from a spacecraft. The results of the experiments were published by Sagan in 1993, in the scientific journal Nature. The experiments were a success, as Galileo was easily able to detect what are referred to as the ‘Sagan requirements for life’. These include strong absorption of light at the red end of the spectrum (indicative of plant photosynthesis), absorption bands of molecular oxygen (again, indicative of plant life), the detection of methane in the atmosphere (a gas created by either volcanic or biological activity), and the detection of narrowband radio wave transmissions (could indicate a technologically advanced civilization).


By the end of its mission, Galileo had conducted 34 orbits of Jupiter and had made multiple fly-bys of Jupiter’s moons: Io 7 times, Callisto 8 times , Ganymede 8 times, Europa 11 times, and one fly-by of Amalthea.

Due in part to Galileo’s discovery of potential oceans on Europa (and possibly other Jovian moons), the decision was made to end the orbiter’s mission by sending it to the same fate as the atmospheric probe eight years prior. Rather than risk contaminating (with either Earth bacteria or radiation from the RTGs) one of Jupiter’s potentially life-harboring moons, Galileo would be ordered to impact Jupiter. On September 21, 2003, Galileo entered Jupiter’s atmosphere at 48.2 kilometers per second (108,000 mph).

The Galilean Moons: Jupiter's four largest satellites

The Galilean Moons: Jupiter’s four largest satellites – Credit: NASA/JPL/DLR

The total mission cost was approximately $1.4 billion USD, had more than 100 scientist partners from many different countries, and involved the work of more than 800 individuals.

In spite of postponements, an antenna that failed to fully deploy, and a tape recorder malfunction, Galileo performed magnificently. It was a mission that brought us up close and personal with our Solar system’s largest planet and provided us with a much more detailed understanding of the Jovian system. Galileo paved the way for future studies of Jupiter and its moons. Its successor, the Juno orbiter, is currently en route and arriving in July of 2016, and plans are being considered to investigate Europa’s oceans. Like the astronomer that the spacecraft took its name from, Galileo Galilei, this mission revealed new worlds that we previously could only distantly wonder about.

 

Clyde Tombaugh Discovers Pluto

*click* ….. *click* …. *click* …. *click*

On this day in 1930, a 24-year-old man named Clyde Tombaugh was squinting into the Lowell Observatory’s Zeiss Blink microscope. The unique device, also known as a blink comparator, held two photographic plates that each contained the image of a star field taken the previous month–the images showing the same section of sky, taken a few days apart. Tombaugh could rapidly switch between the two images by rotating a dial, allowing him to quickly compare the images and watch for any variations between the two that would indicate a body moving more rapidly than the background stars (eg. planets, asteroids, etc.).

*click* ….. *click*

Late into that February afternoon, a subtle difference between the two images caught his eye.

Animation comparing Tombaugh's star fields.

Can you spot Pluto?  Click on the image to see a version with Pluto identified.   Image Credit: National Air & Space Museum

 

*click* … *click* … *click* .. *click* . *click* *click*

He spent 45 minutes comparing the two images. Convinced of his findings, he contacted his supervisors. Over the next couple of weeks, the observatory focused its attention to the object before confirming Tombaugh’s discovery. On May 1st, 1930, a new planet was introduced to the world: Pluto.

And of course, in 2015, we got to see Pluto in a way that Mr. Tombaugh himself could only have imagined.

NASA’s New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015.

NASA’s New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015.        Source: NASA

Dwarf Planet Ceres

PIA19064-Ceres-DwarfPlanet-StillImage-20150414

Previously, I told you the fascinating story of Ceres’s discovery and complicated identity crisis; now I’m ready to tell you about the dwarf planet specifically.

 

Let’s take a quick trip out beyond our Moon, past Mars (if you find yourself at Jupiter, you’ve gone too far), and into the realm that is commonly known as the asteroid belt. Now, contrary to popular depictions, the asteroid belt isn’t crammed full of asteroids. As a kid, I remember seeing illustrations of the asteroid belt that made it look as densely packed as Saturn’s rings. That depiction is a gross exaggeration. In fact, while there are billions of bodies orbiting out in the asteroid belt–it is believed that there are somewhere between 1 and 2 million asteroids with a diameter of 1 kilometer or more–the area is still mostly just empty space. If you were to board a rocket that would fly through the asteroid belt, the chances of actually smacking into anything are extremely slim. Of the asteroids in the belt that have a diameter of 10 km or more, a collision is only likely to occur about once every 10 million years. So anyway, this is the home of one such body, the dwarf planet Ceres.

Compared to the other bodies in the asteroid belt, Ceres is huge. Ceres has a diameter of 950 kilometers (590 miles). This is a little smaller than the width of Texas or Montana. Ceres comprises between a quarter and a third of the mass of the entire asteroid belt. King among the asteroid belt, Ceres falls short when facing up against the other planets in our solar system. Compared to Earth and the Moon, Ceres has the mass of .00015 that of the Earth and .0128 that of the Moon. (For some perspective, it would take almost 80 Cereses to equal the mass of just the Moon.)

Size comparison of Earth, the Moon, and Ceres.

Size comparison of Earth, the Moon, and Ceres.

 

Ceres orbits the Sun at an average distance of 415 million kilometers (257 million miles), in a nearly circular orbit. At this distance from the Sun, and at the speed that Ceres is traveling, one year on Ceres is equivalent to 4.6 years on Earth.

Ceres is believed to consist of a thin, dusty crust situated above a fairly thick layer of water-ice. At the center of the dwarf planet is a thick rocky core.

Cutaway image showing Ceres's layers.

Cutaway image showing Ceres’s layers.
“Ceres Cutaway” by NASA, ESA, and A. Feild (STScI)

 

Ceres, of course, has less mass than the Earth, and thus you would weigh less standing on a scale on Ceres than you would on Earth.  If you weigh 150 pounds on Earth, then you weigh a mere 4.2 pounds on Ceres!

Ceres is one of the latest planets to be explored by high-tech modern spacecraft. NASA’s Dawn spacecraft is currently orbiting the dwarf planet at a just recently arrived distance of only 2,700 miles above its surface. For about a month, Dawn will orbit and study Ceres from this location. The spacecraft will complete an orbit every three days, constantly kicking images and other important data back to Earth. For some perspective, the resolution Dawn can obtain while imaging Ceres is somewhat comparable to what it would be like for you to observe a soccer ball from 10 feet away. Subsequent to the 2,700 mapping orbit, Dawn will venture even closer to the dwarf planet providing better and better views of Ceres. By the end of 2015, Dawn will be concluding its mission at an altitude of only 230 miles. Dawn’s cameras at this distance will be able to produce images with a resolution 850 times greater than that of what Hubble would be able to produce. Now, that soccer ball is a mere 3.3 inches away! At this distance, Dawn will be in a fairly stable orbit around the dwarf planet and is expected to become its satellite into perpetuity.

I’ll have more to share about Dawn soon.

For now, let’s all celebrate the fact that we’re still exploring–exploring not just planets and asteroids and moons, but exploring actual worlds. Let’s celebrate the fact that we’re learning new things about this particular world on a daily basis and that this will continue for many months to come. And, let’s celebrate the fact that with all that we know today, it’s a tiny amount compared to what we still get to learn in the future. Having a lot to learn, I think, is much more exciting than already knowing it all.

Ceres–Either the Most or Second-Most Popular Dwarf Planet

It has been nearly a decade since the International Astronomical Union (IAU) formally defined the word ‘planet’, resulting in the reclassification of Pluto as a ‘dwarf planet’. Some people still remain upset about the decision, considering the new classification as a demotion. If you roll with the kinds of people that I do, battle-lines have been drawn around the issue and many a friendship have been lost in the process. I don’t want to rekindle those debates (this is likely inevitable, however, as Pluto will be in the news quite a bit in the coming months as New Horizons is finally about to have its encounter with the dwa… whatever-you-want-to-call-it), so let’s take a look at a dwarf planet that appears to have finally found comfort in its classification: Ceres.

Color view of Ceres as imaged by Hubble in 2004 - Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI)

Color view of Ceres as imaged by Hubble in 2004 – Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI)

If you thought Pluto’s designation was complicated and controversial, just wait until you Ceres’s story.

Ceres has had a bit of an identity crisis of its own. Italian astronomer Giuseppe Piazzi discovered Ceres on New Years Day, 1801. He at first thought it was a star, but observed its movements against the stellar backdrop over the course of a few days and determined it to be a planet. He took a conservative approach in his announcement however, by referring to it as a comet.

I have announced this star as a comet, but since it shows no nebulosity, and moreover, since it had a slow and rather uniform motion, I surmise that it could be something better than a comet. However, I would not by any means advance publicly this conjecture. – Giuseppe Piazzi in a letter to fellow Italian astronomer Barnaba Oriani

With the help of other astronomers and using a method for calculating orbits developed by Carl Friedrich Gauss, it was confirmed that the object was not a comet, but in fact some sort of small planet. German astronomer Johann Bode had been promoting his hypothesis that planets orbited their host stars at distances that could predicted by mathematics. This hypothesis predicted a planet should exist between Mars and Jupiter. When Bode heard news of Piazzi’s discovery of an object at precisely that location, he rushed to announce that the missing planet had been located and even went as far as to name it himself. The name he gave: Juno. Piazzi, however, had taken the liberty as the new planet’s discoverer to give it the name ‘Ceres Ferdinandea’, honoring the patron goddess of Sicily and King Ferdinand of Bourbon. Piazzi rightfully objected to Bode’s stake on naming rights:

“If the Germans think they have the right to name somebody else’s discoveries they can call my new star the way they like: as for me I will always keep it the name of Cerere and I will be very obliged if you and your colleagues will do the same.” Piazzi in a letter to prominent astronomer and editor of scientific journals, Franz Xaver von Zach.

Piazzi’s name ultimately won out, though it was shortened to its currently-accepted name: Ceres.

"Giuseppe Piazzi" by F. Bordiga - Image from Smithsonian Institute Library

“Giuseppe Piazzi” by F. Bordiga – Image from Smithsonian Institute Library

After more objects were discovered orbiting in the same area, Sir William Herschel, in 1802, labeled these new objects, including Ceres, as asteroids (though the term asteroid, which means “star-like”, wasn’t commonly accepted until the early 1900s).

So thus, Ceres became the first, and largest, of the asteroids that orbit between Mars and Jupiter in a loose collection that we collectively refer to as the asteroid belt. But Ceres’s identity crisis wasn’t over just yet. Ceres was king of the asteroids until 2006, when that controversial IAU reclassified it as a dwarf planet. 1

From star, to comet, to planet, to asteroid, and finally to dwarf planet, Ceres looks to Pluto and remarks, “Psh… and you think you had it bad.”

Now that this introduction is out of the way, stay tuned for more information about Ceres. I’ll tell you about this fascinating world and get you up to speed on NASA’s Dawn spacecraft that will be arriving at Ceres in March of this year.

Animation of Ceres as viewed by the Dawn spacecraft on January 13, 2015. - Source: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Animation of Ceres as viewed by the Dawn spacecraft on January 13, 2015. – Source: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

(Much of the information in this post came from Giuseppe Piazzi and the Discovery of Ceres, G. Foderà Serio, A. Manara, and P. Sicoli, published in Asteroids III by the University of Arizona Press)


  1. Since Pluto’s reclassification from planet to dwarf planet was viewed by many as a demotion, I wonder if it’s safe to refer to Ceres’s reclassification from asteroid to dwarf planet as a promotion.