One More Thing About That Mars Object

The latest Curiosity status report indicates that the mysterious shiny object next to the rover “appears to be a shred of plastic material, likely benign, but it has not been definitively identified.”

To proceed cautiously, the team is continuing the investigation for another day before deciding whether to resume processing of the sample in the scoop. Plans include imaging of surroundings with the Mastcam.

A sample of sand and dust scooped up on Sol 61 remains in the scoop. Plans to transfer it from the scoop into other chambers of the sample-processing device were postponed as a precaution during planning for Sol 62 after the small, bright object was detected in an image from the Mast Camera (Mastcam).

I still attest that Curiosity should zap the thing with ChemCam.

(This might explain why I’m a blogger and not a NASA engineer.)

Please share!

Curiosity Spots Something Curious

The Mars Curiosity rover tweeted (of course it tweets!) the following earlier this afternoon:


Today, Curiosity’s robotic arm reached down and scooped up its first sample of Martian dirt. Its cameras captured the historic moment, but caught something else too. There, among countless grains of reddish-orange sand, a single shimmering something caught the eyes of the image analysts back home on Earth.

Can you see it?
(Image credit: NASA/JPL-Caltech/MSSS)

How about now?
(Image credit: NASA/JPL-Caltech/MSSS and 46BLYZ)

Even clicking those images and looking at them full-size still doesn’t offer much more in the way of a better look. It’s definitely different than the soil and appears metallic, but that’s about all we can make out. NASA isn’t sure what it is yet either, which I think makes it more exciting. As a result they’ve temporarily halted anymore scooping:

Curiosity’s first scooping activity appeared to go well on Oct. 7. Subsequently, the rover team decided to refrain from using the rover’s robotic arm on Oct. 8 due to the detection of a bright object on the ground that might be a piece from the rover. Instead of arm activities during the 62nd Martian day, or sol, of the mission, Curiosity is acquiring additional imaging of the object to aid the team in identifying the object and assessing possible impact, if any, to sampling activities.

Curiosity even imaged the object with its ChemCam (Chemistry and Camera), but the raw image doesn’t offer much more than the MastCam1 images:

ChemCam view of unknown object
(Image Credit: NASA/JPL-Caltech/LANL)

It looks a bit less metallic in this grayscale image, perhaps more like plastic. To me it looks like a discarded shell from someone’s shrimp cocktail. (But that’s just me!)

Hey, did you know that ChemCam also has a built-in laser? It totally does. The purpose of the instrument is to zap rocks with a laser while the camera images the resulting plasma created from the vaporized rock. It can then use the images to analyze the composition and other information about that rock.

It’s my firm belief that Curiosity should zap whatever this unknown object is.  For science!

  1. I’m not even going to look this one up… they call it that because it’s the camera on the mast

Please share!

SpaceX CRS-1 Update

As I mentioned yesterday, the private corporation SpaceX successfully launched its Dragon capsule en route to the International Space Station, on the first Commercial Resupply Services contract ever. I watched the video live and didn’t immediately notice any issues but, come to find out, the Falcon launch vehicle lost one of its engines on the way to orbit. Not to worry, however, as the other engines stepped up and compensated for the failure.

Check out this video of the catastrophic engine failure:

SpaceX released a mission update this morning, describing the event:

The Dragon spacecraft is on its way to the International Space Station this morning and is performing nominally following the launch of the SpaceX CRS-1 official cargo resupply mission from Cape Canaveral, Florida at 8:35PM ET Sunday, October 7, 2012.

Approximately one minute and 19 seconds into last night’s launch, the Falcon 9 rocket detected an anomaly on one first stage engine. Initial data suggests that one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. We know the engine did not explode, because we continued to receive data from it. Panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines. Our review of flight data indicates that neither the rocket stage nor any of the other eight engines were negatively affected by this event.

As designed, the flight computer then recomputed a new ascent profile in real time to ensure Dragon’s entry into orbit for subsequent rendezvous and berthing with the ISS. This was achieved, and there was no effect on Dragon or the cargo resupply mission.

Falcon 9 did exactly what it was designed to do. Like the Saturn V (which experienced engine loss on two flights) and modern airliners, Falcon 9 is designed to handle an engine out situation and still complete its mission. No other rocket currently flying has this ability.

It is worth noting that Falcon 9 shuts down two of its engines to limit acceleration to 5 g’s even on a fully nominal flight. The rocket could therefore have lost another engine and still completed its mission.

Dragon is expected to dock with the ISS on Wednesday.

Please share!

SpaceX Launches Into the Commercial Spaceflight History Books

Or, “This time, for real”.

Back in May, SpaceX launched it’s Dragon capsule on top of their Falcon 9 rocket, on an intercept course with the International Space Station. This was a test to prove that SpaceX could take over the resupply of the ISS, as space becomes a commercial frontier. The test went perfectly and SpaceX was green-lighted as a contractor to deliver cargo to the ISS.

Tonight, the Dragon capsule screamed into the sky as part of the first of these Commercial Resupply Contract deliveries. Launch occurred right on schedule, and from the best I could tell watching the live webstream everything went flawlessly. A few minutes after launch, the Dragon capsule separated and reached orbit. Shortly after that, it deployed its solar arrays and will now cruise its way to the ISS.

This mission carries a full load of supplies for the station, but won’t be leaving empty; Dragon will be returning nearly 2,000 pounds (approximately twice the payload going up!) of equipment, astronaut blood and urine samples, and other items.

Dragon is set to dock with the ISS on Wednesday, again through the use of the station’s massive robotic arm as it was during the May trip.

Please share!

2012 Transit of Venus

2004 Venus Transit

2004 transit of Venus through a small telescope. Click image for source.

Next Tuesday, June 5th (June 5th in North America / June 6 eastern continents), you’ll have the opportunity to observe something that you’re extremely unlikely to ever see again. Over the course of a few hours, Venus will cross in front of the Sun from the vantage point of Earth. Venus will appear as a small black dot against the bright blazing disc of the Sun. Just like the annular eclipse from a couple of weeks ago, it is NOT SAFE to view this event directly. Here are a few ways to view it:

Disposable solar shade glasses – This is the cheapest and simplest method. These are the same glasses you would use to view a solar eclipse. They’re generally made of cardboard and have extremely dark film for lenses. When looking through them, you cannot see anything except for something as bright as the Sun. If you can see the surrounding landscape through them, they are NOT dark enough and you are at great risk of damaging your eyes.

Pinhole projection – If you’ve got clear skies and an overhead Sun, you can project the image of the Sun (and transit) using a simple pinhole projector. This can be as simple as a piece of paper with a hole poked in it, to a more elaborate and larger projector. Feel free to be creative, as long as you do it safely. Here are some sources for pinhole project ideas: Cosmos Magazine / / Exploratorium

Binocular/Telescope projection – You can also project a magnified view of the transit by using a pair of binoculars or a small telescope. Here, you want to point the objective lens (the big lens away from the eyepiece) at the Sun, let the light go through the binoculars/telescope and project that image onto a shaded piece of paper. Experiment with different distances until you get everything in focus. Note, that doing this method for a significant amount of time can damage the optics in your binoculars or telescope.

Webcast – If the clouds have you down or the transit occurs during your night time where you live, you can still watch the event unfold from what will certainly be a number of online webcasts. My friends at Cosmoquest will be hosting a Google+ Hangout with various feeds of the transit, and Slooh will make an event out of it as well.

So now that you know how to look, you need to know when and where.

Map showing where the 2012 Venus transit will be visible from.[Map showing where the 2012 Venus transit will be visible from. Source: NASA / Click for larger view.]

Being an amateur astronomer in Alaska (especially along the coast) is the true definition of optimism. There are a lot of clouds year-round, never-ending sunlight during the Summer, and frigidly cold winters that make skygazing a test of tolerance and wills. That said, on those few nights where the clouds have retreated, it’s dark, and above zero… those nights are a-maz-ing. Coincidentally, Alaska is a prime viewing location for the 2012 transit of Venus — in fact, the entire event will be viewable from up here. Ironically, I’ll be out of the state during the transit and will only be able to catch it during a North Dakotan sunset (which sounds pretty, anyhow).

For the most accurate information for your location, there are a handful of resources. There are free iPhone and Android apps for your smartphone. Additionally, if you can find your location on a map this webpage is a fantastic guide. An example of how it varies from place to place:

My home in Kenai, Alaska (June 5th):
Venus crosses into the limb of the Sun at 2:06pm local time. Approximately 20 minutes later, Venus is fully within the disc of the Sun. It will slowly make its way across the face of the Sun over the next 6 hours, reaching the opposite limb at around 8:30pm local time. At 8:48, the show is over with the Sun still high in the sky.

Where I’ll be in North Dakota (June 5th):
The transit will begin at 5:04pm local time. By 8:27pm local time, Venus will be at the center-point of its transit. Around an hour later, the Sun will set, taking the transiting Venus with it.

The bottom line is, due to the duration of the event you should be able to get at least a glimpse of it from anywhere in North America, to a varying degree as shown above. And you’ll definitely want to make every opportunity to see it, because it will quite likely be the last time you have the chance — unless, of course, you plan on being alive for another 105 years (and still have the eyesight to see it!). That’s right, this will not occur again until 2117 — so this is your chance.

Good luck and happy observing!

Please share!

SpaceX Launches Itself Towards History

SpaceX COTS 2 Mission Patch

SpaceX COTS 2 mission patch. Credit: SpaceX

Early Tuesday (5/22) morning, commercial spaceflight took an important step forward which, if everything goes as planned, will result in a historic bookmark in world history tomorrow morning. On May 22nd, 2012, at 3:44am (EST), the private aerospace company, SpaceX, became the first private organization to launch a space capsule filled with supplies on an intercept-course with the International Space Station. If everything checks out, NASA will give SpaceX the go-ahead to dock with the ISS. This first docking maneuver will be accomplished with the aid of the ISS’s robotic arm, which will grab a hold of the Dragon capsule and precisely mate it with the ISS. Subsequent missions will dock solely under Dragon’s power.

Based on my timezone and preferences, the launch was too early to wake up for, yet too late to stay up for. I set an alarm and woke up to watch the show. I watched the final couple of minutes of countdown before seeing that Falcon rocket gracefully take flight towards the stars. The launch feed was quite unlike the typical ones you’ll see coming out of NASA’s mission control. Where NASA’s controllers and announcers stoically announce data and rarely deviate from “strictly-business”, joy was ubiquitous following the Falcon launch and that emotion turned into sheer jubilation when the Dragon capsule separated from the Falcon and deployed its solar arrays.

SpaceX CEO and Chief Designer, Elon Musk, described the scene inside SpaceX headquarters:

 “People have really given it their all. We had most of the company gathered around SpaceX Mission Control. They are seeing the fruits of their labor and wondering if it is going to work. There is so much hope riding on that rocket. When it worked, and Dragon worked, and the solar arrays deployed, people saw their handiwork in space operating as it should. There was tremendous elation. For us it is like winning the Super Bowl.”

Regardless of the fact that I was too excited to fall asleep right away after turning off the NASA feed, I’m very glad I sacrificed some of my sleep to watch that historic scene unfold.

Early this morning, the Dragon capsule conducted a “fly-under” of the ISS, bringing it within 2.4 km of the station. A number of maneuvers and tests were conducted to ensure that the Dragon capsule was operating properly and could be completely controlled, in anticipation of tomorrow’s docking. Everything went flawlessly.

I’ll likely be sacrificing some more sleep to catch all the action.  You can too: Live coverage begins at 7:30am ET (3:30am Pacific), and the feed can be found at SpaceX’s website.

Please share!